论文部分内容阅读
根据人工神经网络自组织、高度并行以及具有非线性映射能力的特点,提出一种基于云计算的Hadoop多模式并行分类算法。通过将自组织映射网络与多个并行BP神经网络结合,提高多语义模式中复杂分类问题的学习效率和训练精度。采用Hadoop平台下的MapReduce框架实现算法的并行处理,解决大规模数据样本训练时内存开销大、通信耗时长的问题。实验结果表明,与传统单BP多输出分类算法相比,该算法训练速度更快、分类精度更高,在处理大规模数据集时具有实时和高效的特性。