论文部分内容阅读
贝叶斯极限学习机(BELM)具有充分利用数据先验信息,可以自适应估计模型参数的特点。但在样本数量不断增加时,如果每次都对BELM重新训练将会降低计算效率。针对此问题,本文提出一种动态贝叶斯极限学习机(DBELM)方法以应用于变形监测数据实时预报。该方法以BELM训练的模型参数为初值,根据新增样本信息可对初始模型参数进行动态更新,并从理论上推导了相关计算公式。通过对仿真数据和实际变形数据进行详细分析表明:DBELM方法的预报精度要优于BELM、正则化极限学习机(RELM)、极限学习机(ELM)3种方法。特别