Analytical solution for a strong free-surface water vortex describing flow in a full-scale gravitati

来源 :水科学与水工程 | 被引量 : 0次 | 上传用户:kevin_0713
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Strong free-surface water vortices are found throughout industrial hydraulic systems used for water treatment, flow regulation, and energy generation. Previous models using the volumetric flow rate as a model input have generally been semi-empirical, and have tended to have some limitations in terms of the design of practical hydropower systems. In this study, an analytical model of a strong free-surface water vortex was developed. This model only requires the water head and geometric parameters as its inputs and calculates the maximum volumetric flow rate, air-core diameter, and rotational constant. Detailed experimental depth-discharge data from a full-scale gravitational vortex hydropower system, unavailable in the relevant literature, were obtained, and the simulated results showed excellent agreement with the experimental observations. These data could be used to verify similar models using laboratory-scale physical models in order to investigate the scaling effects. In contrast to previous models, this model does not assume a constant average velocity across the vortex radius and allows precise calculation of the resultant velocity vectors. Therefore, this model presents advantages in turbine design for energy generation systems.
其他文献
尼洋河流域是雅鲁藏布江第四大支流,受冰川、积雪和冻土影响,水循环关系极其复杂.为深入研究该区域内的水文循环过程,本文在寒区水循环模型(WEP-COR)的基础上,针对青藏高原气