论文部分内容阅读
传统的柑橘黄龙病检测方法存在准确度低、稳定性差等问题,该文提出了一种基于最小角回归结合核极限学习机(Least angle regression combined with kernel extreme learning machine,LAR-KELM(RBF))的近红外柑橘黄龙病鉴别方法。该方法将光谱数据通过小波变换进行预处理,然后用最小角回归(LAR)算法进行光谱波长的筛选,最后通过核极限学习机(KELM(RBF))实现样本的分类。实验采用柑橘叶片的近红外光谱数据,验证了LAR-KELM(RBF)算