论文部分内容阅读
Many recent studies have confirmed the existence of liquid slip over particular types of solid surfaces, and these so-called super-hydrophobic surfaces have been shown to generate effective liquid slip because of the air trapped between the surface structures. In this paper, based on boundary layer theory, the microscopic structure of the super-hydrophobic surface is analyzed. The liquid slip effect on friction-reduction over super-hydrophobic surfaces under various flow conditions is investigated by experiments with a flume and water tunnel. The experimental results show that the greatest amount of drag-reduction that can be achieved is 8.76% at a low Re.