论文部分内容阅读
This paper presents two language models that utilize a Chinese semantic dependency parsing technique for speech recognition. The models are based on a representation of the Chinese semantic structure with dependency relations. A semantic dependency parser was described to automatically tag the semantic class for each word with 90.9% accuracy and parse the sentence semantic dependency structure with 75.8% accuracy. The Chinese semantic parsing technique was applied to structure language models to develop two language models, the semantic dependency model (SDM) and the headword trigram model (HTM). These language models were evaluated using Chinese speech recognition. The experiments show that both models outperform the word trigram model in terms of the Chinese character recognition error rate.