论文部分内容阅读
为解决传统钢丝绳断丝损伤识别方法精度低,BP神经网络陷入局部最优等问题,提出改进粒子群算法(IPSO)的BP神经网络识别模型。通过采集钢丝绳断丝损伤信号,提取缺陷信号特征,用峰值、峰峰值、波宽、波形下面积和波动能量5个特征值组成特征向量作为神经网络的输人,断丝数量作为神经网络的输出;利用改进粒子群算法对BP神经网络的初始权值和阈值进行优化;建立基于IPSO-BP算法的神经网络模型,用于钢丝绳断丝的定量识别。结果表明:IPSO-BPS神经网络模型的钢丝绳断丝损伤识别精度、泛化能力均高于传统BP神经网络模型,