论文部分内容阅读
摘要:协同过滤是目前电子商务推荐系统中使用最广泛最成功的一种个性化推荐算法。受数据稀疏性影响,传统协同过滤算法在较小共同评分项集上计算出的相似度不能准确反映用户间的相似关系,严重影响了推荐系统的精度。针对该问题,在分析共同评分分布及其与相似度关系的基础上,提出了基于共同评分的协同过滤算法,无须计算相似度,直接将共同评分作为最近邻选择标准。MovieLens实验表明该算法能明显提高预测结果的准确性和覆盖率。
关键词:电子商务;协同过滤;共同评分
关键词:电子商务;协同过滤;共同评分