论文部分内容阅读
特征选择是目前机器学习领域的研究热点之一,特征选择结果的好坏直接影响着分类器的分类精度和泛化性能.首先分析了特征选择算法的框架;其次分析了支持向量机用于特征选择的意义;然后对基于支持向量机的特征选择算法进行了分析和总结;最后从算法实用性角度出发,面向网络数据,探讨基于支持向量机的特征选择算法研究思路.