论文部分内容阅读
目的探索ICEstimator用来计算半数致死浓度(LC5)0值及其95%可信区间(95%CI)的可行性和优越性。方法利用ICEstimator分别计算敌百虫对白纹伊蚊、致倦库蚊的LC50及其95%CI和氟氯氰菊酯对白纹伊蚊、致倦库蚊的LC50及其95%CI,并与目前常用的计算方法(SPSS、SAS、DPS)对上述数值进行分析比较。结果经DPS/SAS/SPSS软件计算氟氯氰菊酯对白纹伊蚊及致倦库蚊的LC50(mg/ml)及其95%CI分别为5.03(4.68~5.38)、5.20(4.90~5.60)、5.14(4.83~5.46)、5.14(4.83~5.46)和5.31(4.58~6.03)、5.40(4.75~6.15)、5.28(2.37~7.11)、5.28(2.37~7.11);敌百虫对白纹伊蚊及致倦库蚊的LC5(0mg/ml)及其95%CI分别为92.92(83.27~102.58)、100.60(90.60~110.70)、96.00(87.88~105.33)、96.00(87.88~105.33)和1123.02(998.89~1247.14)、1123.70(800.60~1652.40)、1111.91(725.47~1745.88)、1111.90(725.46~1745.87)。经非参数K-W-Test检验,二者计算的数值及其95%CI差异均无统计学意义(χ2=5.595,P=0.113)。结论用ICEstimator可快速得到某杀虫剂对某种蚊虫的LC50及其95%CI,与SPSS和SAS方法比较,该计算方法计算过程简单,速度快,更加有效地利用了初始数据。
Objective To explore the feasibility and superiority of ICEstimator in calculating the LC50 0 and its 95% confidence interval (95% CI). Methods LC50 and 95% CI of 95% CI and cyfluthrin against Aedes albopictus and Culex quinquefasciatus were determined by ICEstimator using ICEstimator. Methods (SPSS, SAS, DPS) The above values were analyzed and compared. Results LC50 (mg / ml) and 95% CIs of cyfluthrin against Aedes albopictus and Culex pipiens quinquefasciatus were calculated by DPS / SAS / SPSS software to be 5.03 (4.68-5.38), 5.20 (4.90-5.60), 5.14 4.83-5.46), 5.14 (4.83-5.46) and 5.31 (4.58-6.03), 5.40 (4.75-6.15), 5.28 (2.37-7.11) and 5.28 (2.37-7.11), respectively. LC50 of Culex pipiens pallens and its 95% CI were 92.92 (83.27 ~ 102.58), 100.60 (90.60 ~ 110.70), 96.00 (87.88 ~ 105.33), 96.00 (87.88 ~ 105.33) and 1123.02 (998.89 ~ 1247.14) , 1123.70 (800.60 ~ 1652.40), 1111.91 (725.47 ~ 1745.88), 1111.90 (725.46 ~ 1745.87). The non-parametric K-W-Test test showed that there was no significant difference between the two values (95% CI, 95% CI) and the 95% CI (χ2 = 5.595, P = 0.113). Conclusion ICEstimator can quickly obtain the LC50 and 95% CI of a certain insecticide against some mosquitoes. Compared with SPSS and SAS methods, the ICEstimator can be used to calculate the LC50 of a certain insecticide. The calculation method is simple, fast and more efficient to use the initial data.