论文部分内容阅读
本文在声子色散和库仑束缚势的影响下利用压缩态变分法计算了抛物量子点中弱耦合极化子的基态能量.采用的变分方法是基于逐次正则并且利用单模压缩态变换处理通常被我们所忽略的在第一次幺正变换中产生的声子产生湮灭算符的双线性项.计算得出了在考虑声子色散和库仑束缚势的情况下抛物量子点中弱耦合极化子的基态能量的数学表达式.讨论了在弱耦合情况下,受限长度,电子-声子耦合常数,色散系数,库仑结合参数与基态能量之间的依赖关系.
In this paper, we calculate the ground-state energies of weakly coupled polarons in parabolic quantum dots under the influence of phonon dispersion and Coulomb bondage by the squeezed-state variational method. The variational method is based on successive regularity and single-mode squeezed state transformation The bilinear term of the annihilation operator that is usually neglected by the first unitary transformation generates the bilinear term of the annihilation operator. We have calculated the weak coupling in the parabolic quantum dot considering the phonon dispersion and the Coulomb bondage The mathematical expression of the ground state energy of the polaron is discussed. The dependence of the confinement length, the electron-phonon coupling constant, the chromatic dispersion coefficient, the Coulomb bond parameter and the ground state energy in the case of weak coupling is discussed.