论文部分内容阅读
与传统的测井资料解释和信息处理技术相比较,在对非均质性较强、物性参数级差较大的储集层物性预测中,人工神经网络技术具有极强的自适应和自学习能力,其通过很强的非线性映射,能够精确地建立储集层参数与测井响应之间的非线性模型。在论述神经网络技术基本原理的基础上,对西峰油田延安组和延长组储层的物性参数(孔隙度和渗透率等)进行了预测,取得了较理想的结果。预测结果表明:渗透率参数级差不大(<10^2)时,预测精度高;渗透率的变化范围较大(>10^3)时,对具有高渗透率储层的预测精度高,而对具有低渗透率储层的