论文部分内容阅读
简述了小波包分析及用于特征提取的机理,以SKF 6326-C3轴承为例,从吉林同发风电场采集了不同工况下的实时信号,利用小波包对滚动轴承振动信号进行分解,振动信号被分解到独立的频段。不同频带内的信号能量变化反映了运行状态的改变,提取各频带小波包能量谱,并对其进行能量归一化处理,作为特征向量,最后应用于基于Kohonen神经网络的故障诊断方法。经对大量实测数据的处理和分析,能够比较准确地诊断出轴承的故障。