论文部分内容阅读
评分数据的稀疏性影响协同过滤算法的推荐质量。为此,提出一种基于近邻评分填补的混合协同过滤推荐算法。对原始评分矩阵进行全局降维,在低维的主成分空间中计算用户相似性,减少算法复杂度。采用奇异值分解法对近邻评分缺失值进行填补,降低近邻评分的稀疏性。在MovieLens数据集上的实验结果表明,该算法具有较好的推荐效果。