联合多尺度和注意力-残差的深度监督乳腺癌分割

来源 :光学精密工程 | 被引量 : 0次 | 上传用户:kzhengting
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对DCE-MRI乳腺癌病变区的浸润范围勾画精度低、结构形态变化大、强度不均和边界对比度低等原因,导致乳腺癌病变区自动化分割存在准确率低和错分割的问题,为此,本文构建了一个二阶段乳腺癌病变区分割框架,提出一种乳腺癌病变区分割模型UTB-net,分别在编码路径和末端整合多尺度和Non-local,在解码路径构建注意力-残差模块。首先,利用基准U-net网络模型实现对乳房区域的粗糙勾画,消除影像中胸肌肉、脂肪、心脏等不相关组织对乳腺癌分割的影响。然后,基于提取的ROI结果,在模型的编码路径嵌入了多尺度信
其他文献
针对视频数据利用低效和光测设备目标识别能力较弱的问题,提出一种使用海量视频数据建立数据库进而构建红外目标识别系统的方法。首先设计快速红外目标检测算法,提取目标并分类建立数据库;然后结合特定任务建立一组较匹配且结构不同的卷积神经网络,并提出基于测试准确度均值统计分析和参数规模的选型策略,选出泛化能力较好且结构简单的卷积神经网络以及适当的训练轮数;最后加载优选模型及其参数作为分类器,与检测器结合实现红
铁磁材料表面压刻、划刻的重要字符被损毁后,无法被正常识别,本文基于滑移感生磁各向异性和磁光效应,提出了一种高分辨率、无损的磁光成像复原方法。论文分析了由铁磁材料塑性变形引起的滑移感生磁各向异性导致的磁场分布变化规律,建立了基于磁光效应的损毁字符复原系统模型,研究了影响磁光成像分辨率的因素,根据建立的系统模型构建了实验系统,实现了损毁字符的复原识别,并对复原图像进行灰度分析。实验结果表明,随着起偏器
红外弱小目标检测被广泛应用于预警、制导等国防领域中。然而,红外弱小目标所占像素少、缺少形状特征和纹理特征,使得红外弱小目标检测成为一个具有挑战性的课题。针对红外弱小目标检测,提出了一种简单高效的实时红外弱小目标检测网络。检测网络利用自适应感受野融合模块来增加小目标周围的上下文信息,并通过引入空间注意力机制来建立不同区域之间的相关性模型,使不同区域之间的相关性和紧凑性得到加强。为了提高检测网络对目标