论文部分内容阅读
在强化学习的值函数线性估计问题中,时序差分不动点解和贝尔曼残差的方法都是对真实值函数的斜投影,然而这两种解经证明都不是最优解.通过对两种投影进行加权平均,提出了一种一般化的斜投影算子.基于此推导出两种残差时序差分学习算法,并给出了这两种算法在异策略下的收敛性证明.在著名的Baird的异策略反例实验上,与相关算法进行了对比,实验结果验证了所提算法的正确性和有效性.