论文部分内容阅读
针对中小型企业生产车间柔性作业调度问题,采用改进的遗传算法求解最优调度结果。将最大完工时间最小化作为调度目标,对经典遗传算法进行相应的改进。首先利用粒子群算法获取工序序列与粒子参数之间的映射关系,在初始种群中利用混沌映射和反向学习策略以提高初始种群质量;然后提出一种将机器编码和工序编码相结合的分段编码方法,以解决某道工序有多台可选机器加工的问题;最后利用自适应交叉和变异概率提高算法收敛速度。通过对Brandimarte设计的10组不同规格的基准案例进行仿真实验,得到进化曲线和最优调度方案。实验结果验证了该