Towards high performance low bitwidth training for deep neural networks

来源 :半导体学报(英文版) | 被引量 : 0次 | 上传用户:likunhoney
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The high performance of the state-of-the-art deep neural networks (DNNs) is acquired at the cost of huge consumption of computing resources.Quantization of networks is recently recognized as a promising solution to solve the problem and significantly reduce the resource usage.However,the previous quantization works have mostly focused on the DNN inference,and there were very few works to address on the challenges of DNN training.In this paper,we leverage dynamic fixed-point (DFP) quantization algorithm and stochastic rounding (SR) strategy to develop a fully quantized 8-bit neural networks targeting low bitwidth training.The experiments show that,in comparison to the full-precision networks,the accuracy drop of our quantized convolutional neural networks (CNNs) can be less than 2%,even when applied to deep models evaluated on ImageNet dataset.Additionally,our 8-bit GNMT translation network can achieve almost identical BLEU to full-precision network.We further implement a prototype on FPGA and the synthesis shows that the low bitwidth training scheme can reduce the resource usage significantly.
其他文献
随着传统的集中式发电带来的诸多问题,如:输电线路长,线路损耗大,电压跌落,污染环境,向偏远地区或农村供电困难等,分布式电源的出现能有效弥补这些缺陷。分布式发电技术可以将能源系统小型化和微型化,帮助用户结合自身实际进行相应的调整,以使能源供给系统能够充分满足其需求,也提高了能源用户积极参与这项提高能源效率、减少环境污染的能源改革事业之中。但是分布式电源并入配电网后,会对配电网的产生影响。通过介绍光伏
2008 年,国际大电网会议(International Council on Large Electric Systems,CIGRE)配电与分布式发电专委会(C6)C6.11项目组提出主动配电网(Active Distribution Network,ADN)的概念。AND可对接入配电网中的分布式发电(Distributed Generation,DG)系统进行控制,并采用灵活的网络拓扑对配电
与其它培训方式相比,在电厂仿真机上培训运行值班员具有周期短、成本低、事故演练方便、随意操作性强等优点,在运行培训中得到越来越多的应用。仿真机功能实现的可信性对能否达到预期培训目的具有重要意义。本文通过对仿真机数学建模、软件仿真以及与仿真机结果的对比研究来验证仿真机的可信性。首先对丰满水电厂运行仿真培训系统进行了分析研究。接着建立了仿真机中的水轮机及调速器、发电机及励磁系统、电网等环节的数学模型。然
期刊
期刊