一种适用于食品供应链的UHF RFID读写器设计

来源 :计算机技术与发展 | 被引量 : 0次 | 上传用户:tsao8883
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
食品供应链中长期存在食品安全隐患,而无线射频识别技术正是解决这一问题的关键方法之一.射频识别技术凭借自身具备的技术和概念优势被广泛应用于各种货品的供应链管理,但由于受到系统设计理念和技术的限制,国内的RFID读写器产品很难推广到食品供应链等普通民用领域.基于这一现状,设计并实现了一种基于UHF RFID的便携式超高频读写器,让安卓手机充当传统读写器的键盘和显示屏.使用Android studio开发手机应用程序,食品在供应链流通过程中工作人员可以通过手机APP远程控制RFID模块与食品中的电子标签进行完整的数据通信.手机底层固件下发指令经由蓝牙模块传入RFID读写模块,读写模块与标签完成选择、盘存操作后读取标签中的数据,从而完成食品与终端设备间的信息交换,实时掌握食品在整个供应链网络中的流通信息.智慧化、信息化食品供应链管理,进一步保障了食品安全.
其他文献
新冠疫情导致全球在线教育异军突起,如何打破时间、空间的限制实时监督学生的在线学习状态随时调整教学策略进而提高学习效率具有重要意义.基于2D与3D图像处理技术,提出了一种在线评估学习状态的方法,将学习者的学习状态分为无人、多人、用户未授权、分心以及疲劳五种.利用AdaBoost算法与ResNet模型实现人脸检测和识别,并加入质心跟踪算法提高人脸识别检测效率;利用RGB-D图像实时获取人脸三维模型,通过EPNP算法获取学习者头部姿态进而评估学习姿态;提取学习者眼睛和嘴巴的实时图像特征,获取学习者眼睛与嘴巴纵横
传统的矩阵分解算法对药品进行推荐时,由于存在数据稀疏性问题,导致推荐结果不准确.因此提出了一种融合药品语义的混合推荐算法(H-DS).首先利用药品的类别信息构建出药品的分类矩阵,从而计算出药品的类别关联度;然后预处理药品主治功能的描述文本,使用卷积神经网络进行训练,得到其对应的特征;最后用概率矩阵分解算法结合药品类别和功能两方面的语义信息来改进模型,修正矩阵分解的项目隐因子特征,从而实现了对药品的精准推荐.实验表明,在MAE和RMSE评价指标上,H-DS较传统的概率矩阵分解算法(PMF)误差降低了6% ~
随着高等教育的普及,学生人数的增多,高校科研室的事务管理越来越繁杂,虽然部分高校科研室设计开发了自己的科研室管理平台,但存在各科研室之间缺乏沟通、公共资源未能共享、缺乏科研室成员自学习网络教学资源等问题.因此,在深入分析高校科研室管理需求的基础上,设计了基于SSM(SpringMVC+Spring+Mybatis)框架的科研室管理系统.该系统包括首页、管理模块、项目研讨、学习乐园等四大功能模块,其中,在学习乐园模块提出基于虚拟教师的网络教学资源组织模型,实现网络教学资源科学有效的组织与管理.实践表明,科研
现有研究表明,域名生成算法(domain generation algorithm,DGA)已成为僵尸网络建立命令和控制服务通信的关键技术之一.由于利用DGA域名随机性的检测方法已趋于成熟,为逃避检测,DGA算法可能采用加密流量形式进行传输.针对基于域名随机性的检测模型缺乏对加密DGA流量的识别等问题,该文基于DoH(DNS-over-HTTPS)协议验证了DGA流量进行加密传输的可能性,分析了命令控制服务过程所产生的HTTP报文内容、HTTP流量及对应的TCP流量.因利用DoH协议进行传输的数据包中不再
固件作为一种固化在ROM中的特殊软件程序,主要负责加电自检,硬件设备初始化,引导操作系统等基础功能,运行级别和安全等级较高,亟需一种高效、可靠的UEFI模块安全检测方法.采用形式化方法对UEFI模块进行规约与验证,对于提高固件的安全性具有重要意义.基于现有的有限状态自动机和下推自动机基础,分别对UEFI模块中的安全漏洞属性和UEFI模块程序控制流进行形式化建模,利用模型检验对上述模型进行形式化验证.其中利用数据抽象思想将UEFI模块抽象为程序控制流且压缩其状态规模来缓解模型检验时的状态爆炸问题,并给出了相
高压输电线路中绝缘子自爆造成的缺损会严重危害输电线路的安全运行.针对无人机巡检过程中获取的图像光线明暗不定、背景复杂、小目标等因素导致的绝缘子检测难度大、自爆识别准确率低等问题,提出了一种基于串联Faster R-CNN网络的无人机图像中绝缘子检测和自爆识别的算法.该算法分为两个阶段,分别串联使用深度学习中具有强大目标检测能力的Faster R-CNN网络实现对无人机高压输电线路图像中绝缘子自爆的检测和识别.第一阶段使用Faster R-CNN网络检测出无人机高压输电线路图像中绝缘子,第二阶段使用Fast
实体抽取是构建知识图谱极为重要的过程,实体抽取的质量将直接决定构建的知识图谱的质量.为了更好地构建测井领域知识图谱,该文对测井命名实体抽取的方法进行研究.针对在测井领域知识图谱构建过程中尚无公开数据集可用的情况,收集了部分测井领域相关的非结构化文本数据,并对其中的测井实体进行人工标注,构建了测井领域知识图谱命名实体抽取数据集.基于该数据集,提出使用Senna词向量-BiLSTM-CRF的方法对测井非结构文本数据中的命名实体进行抽取,降低数据标注的难度,提高训练效率.实验结果表明使用Senna词向量-BiL
血压实时检测对于及时了解人体的心血管系统状态具有重要意义.传统的侵入式和袖带法的血压测量方式是以间歇式为主,不能满足血压实时检测的需求.针对目前血压检测方式的不规范以及血压预测方法的准确度低下等问题,提出了一种仅使用光电容积脉搏波的基于支持向量回归模型的血压预测方法.该方法仅使用人的光电容积脉搏波生理信号,对该信号消除噪声污染和周期划分之后,再对原始的光电容积脉搏波信号以及其一阶导数和二阶导数提取相关特征,并使用支持向量回归算法构建预测血压的模型.基于MIMICⅢ数据库的数据进行实验,结果表明该模型能有效
唐卡作为中国的非物质文化遗产之一,受到越来越多人的关注.如何快速、准确地对唐卡中的尊像进行分类,对于唐卡的研究以及数字化保护传承极其重要.因此,该文提出了一种改进的基于卷积神经网络基本结构的唐卡尊像自动分类方法.通过手动采集及爬虫技术等收集唐卡图像,构建唐卡尊像数据集,并作为网络模型的输入数据.在保留原有卷积神经网络基本结构的前提下,在传统卷积神经网络结构每组的隐藏层中加入批量归一化层,改善模型的训练效率,并以Relu作为卷积池化层的激活函数,在最后一层全连接输出层前面加入Dropout层,减少过拟合,全
每个土建工程项目其工程浩大,流程复杂,且偷工减料、以次充好、造假数据、权钱交易获得工程承包权等暗箱操作事件时有发生.因此加强并完善土建工程项目的管理体系对土建工程顺利开展,提高工程的整体质量具有重要意义.区块链技术的去中心化、去信任、信息透明、数据不可篡改可溯源等特征可一定程度上提高工程项目的安全性、降低工程事故的发生率.针对当前土建工程项目管理的痛点,文中提出了一种基于联盟区块链的土建工程项目管理平台CEPM-Chain,探索了智能合约应用以及将该技术与土建工程信息建模和信息管理相结合的可行性,利用区块