基于多传感信息融合的轨道线形检测

来源 :计算机测量与控制 | 被引量 : 1次 | 上传用户:huzhan_dong
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
多传感信息融合是实现轨道线形高精度检测的重要方法,而加速度计和陀螺仪是多传感信息融合中的关键传感器;为了解决加速度计和陀螺仪存在累积误差导致测量精度较低的问题,提出一种基于多传感信息融合的轨道线形检测方法;基于捷联惯性系统和双目视觉的测量原理,建立了双目视觉与惯性测量结合的多传感数据融合模型,并利用扩展卡尔曼滤波实现了双目视觉、加速度计和陀螺仪测量信息的融合,提高轨道线形检测精度;通过实验进行验证,结果表明:基于多传感信息融合方法的测量精度比惯性测量方法提高了近9倍,且测量所得坐标在三个方向上的最大
其他文献
飞机飞行过程中产生成百上千种飞行参数和数量庞大的飞行数据,但目前这些数据并没有得到充分有效的利用,飞机的维修还处在以定期维修和事后维修为主的阶段;随着航空技术的不
<正> 1 概述 东方红三号通信卫星的有效载荷包括转发器和天线。当转发器的输出放大器处于饱和工作状态时,在空间各个方向(我们所关心的只是稍大于服务区的范围)所形成的等效
随着电子集成技术的发展及嵌入式系统的普及应用,地面测控系统的元器件密度越来越高,数据传输的通信频率也越来越快;如何使地面测控系统中各电气、电子设备在复杂、多变的电
应用机器视觉实现磁片表面缺陷的自动检测可以提高生产效率、降低生产成本;深度卷积神经网络具有高精度的分类性能,尤其在图像识别方面有显著的优点;但是目前提出的深度神经网络模型,由于参数量和计算量的巨大,在工业生产流水线上不能满足实时检测的需求;针对这个问题,基于深度可分离卷积和通道混洗,提出了一种轻量级高效低延时的卷积神经网络架构MagnetNets;为了评估MagnetNets网络模型的性能,将Ma
文章将EEMD-ICA技术与SVD相结合,提出基于EEMD-SVD-ICA算法的单通道电网电压谐波分离方法,与现有单通道谐波分离方法相比具有无需源信号先验信息,可分离非平稳信号谐波,算法