基于多芯光纤超模干涉的温度传感器

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:luoding
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究了锥型多芯光纤模间耦合所产生的干涉在温度传感中的应用.利用弱耦合多芯光纤拉锥后变成强耦合多芯光纤,从而产生超模干涉的特点,在单模光纤中熔接一段弱耦合七芯光纤.经氢气火焰匀速往返拉锥后,该光纤直径变小,芯间距减小到一定程度后产生超模干涉,从而得到了结构简单、灵敏度高、特异性强的温度传感器.研究发现,拉锥后的光纤直径越小、锥区长度越长,模间耦合越强.选取锥区长度为1.8 μm、锥区直径为31.36 μm的锥型多芯光纤,所设计制作的温度传感器的灵敏度可达840 pm/℃,比之前报道的高约52.7倍.
其他文献
近年来,激光调控优化贵金属纳米复合构型作为一种基于光子与物质相互作用的激发机制的新策略,既可以有效构建出表面洁净无污染的多功能化纳米材料,又能获得常规合成方式难以实现的亚稳相复合构型,因此在众多前沿应用领域具有显著优势.在简单的液相环境中,该策略主要通过聚焦高功率脉冲激光束烧蚀靶材产生高温高压的金属等离子体,后续金属等离子体在热力学非平衡状态下瞬间冷却并成核结晶,从而构建出多种新颖纳米复合构型.此外,该策略充分利用短波长激光束的高光子能量,还可以激发基底材料产生热电子作为独特的还原剂实现周围溶液中金属离子
高功率二极管抽运碱金属蒸气激光器(DPAL)的功率已经达到10 kW量级,具有满足军用激光武器对光光转换效率、质量、体积等高要求的潜力.碱金属蒸气激光器具有可定标放大且保持良好光束质量特性的优点,在过去的十多年中一直是研究热点.首先简介DPAL的原理和研究概况,接着回顾DPAL发展历程,评估DPAL目前取得的重要成果和发展前景,然后分析面临的技术挑战和影响因素,在提出解决方法的同时分析不同方法的优缺点,最后探讨满足实战化要求所面临的单项技术和系统问题的方法.
21世纪初诞生的超分辨光学成像技术凭借纳米级空间分辨率、低损制样等优点,迅速发展成为生命科学研究中不可或缺的技术手段。其中单分子定位超分辨成像(SMLM)技术更是由于其成像原理易懂、空间分辨率极高等特点,一直受到科研工作者的青睐,不断取得重要的技术和应用进展。首先回顾了SMLM的工作原理,讨论了其光路搭建、图像重建、漂移校正等关键技术问题。介绍了两类代表性SMLM技术。列举了多种多色SMLM方法,
钙钛矿发光二极管具有效率高、色纯度高、成本低、发光波长在可见光区域连续可调等优势,在显示、照明、成像等领域具有很大的应用潜力.从钙钛矿发光二极管的基本结构与工作机制等方面入手,重点介绍提升钙钛矿发光二极管器件的荧光量子产率、光提取效率、载流子注入效率和可靠性等性能的主要技术手段,系统阐述了蓝光、绿光、红光和近红外多个波段钙钛矿发光二极管的关键参数提升方法的发展历程,简单介绍了无铅钙钛矿发光二极管的最新研究进展,探讨了钙钛矿发光二极管的技术发展动向,并对进一步提升钙钛矿发光二极管各项性能的方法与思路进行了展
激光熔覆是一种先进的表面改性技术,在航空航天、石油化工等领域应用广泛.本文综述了激光熔覆裂纹的研究进展,阐述了裂纹的分类、形成机理和检测方法,并从优化工艺参数、优化覆层设计、优化粉末组成、优化工艺方法等方面,总结了防控裂纹的应对措施,并提出了一些解决覆层开裂问题的建议以及今后的研究方向和思路.
基于受激布里渊散射(SBS)效应的布里渊动态光栅(BDG)自提出以来,一直受到人们的广泛关注.相比于光纤布拉格光栅(FBG),BDG具有快速重构、读写分离、参数可控等优点,已在保偏光纤、单模光纤、少模光纤和光子晶体光纤中实现.同时,不同类型的BDG研究也不断出现,如啁啾BDG、相移BDG、混沌BDG和随机BDG等.简要介绍了 BDG的产生原理,并对不同光纤中的BDG、不同类型BDG及BDG在分布式光纤传感、全光信号处理领域的应用进行详细阐述,最后,对BDG的发展趋势进行了总结与展望.
针对光纤Bragg光栅(FBG)解调系统中FBG反射谱因包含高斯白噪声、工频噪声而导致解调误差大、解调系统稳定性差的问题,提出一种基于高斯差分(DoG)的FBG峰值检测算法.利用该算法对包含大量噪声的FBG反射谱信号进行峰值检测,平均误差为4 pm,标准差为4.2 pm,相比其他传统算法误差最小.实验结果表明,DoG算法稳定性高,解调误差小,能够明显地降低噪声对FBG反射谱的影响,提高了 FBG解调系统的解调精度.
集成光子技术引领了小型化光学器件的发展,可以在单块芯片上实现非常复杂的功能.许多集成光学器件,如分光器、谐振器、激光器、放大器、滤波器和调制器等均已实现单片集成或者混合集成,各国在设计、制造复杂的光子集成器件投入了大量的研究工作.通过集成光学技术制造的光学陀螺仪可以有效减小陀螺仪的重量和尺寸,降低成本和功耗,并增加系统的可靠性,性能指标也逐渐提升,具有良好的发展潜力.本文介绍了国内外集成光学陀螺仪敏感单元的研究状况,简要分析了当前通过采用不同材料平台和新型谐振结构设计提升集成光学陀螺仪性能的研究特点,期望
为了增强通信系统中光电探测器件对波长为1550nm的光的吸收,提出一种包含硅栅、纳米银球和缓冲层的微纳复合结构.借助金属表面等离子激元共振局域场增强效应,以及硅栅的陷光效应和耦合作用,可以提高复合微纳阵列结构对光的吸收.利用时域有限差分法计算仿真光经过填充银纳米球和氧化铝的硅栅复合微结构阵列后的光场分布,分析硅柱阵列占空比、硅柱边长、高度以及填充物等对吸收性能的影响.仿真结果表明,当硅栅等线或等间隔、硅柱边长为800~1000 nm、硅柱间隙内填充纳米银球的直径为间隙宽度的一半且铺满间隙底部并覆盖氧化铝时
针对传统分解信号方法需要人工设定基函数,具有测不准性等问题,采用自驱动的傅里叶分解方法(FDM)处理信号,提出一种基于FDM能量熵的特征提取与识别方法.首先对振动信号进行FDM分解,得到若干个傅里叶固有带函数;然后利用自相关性原理重构信号,并提取信号FDM能量熵特征;最后将融合的特征向量送入支持向量机进行训练,并对有害振动进行识别.实验结果表明,所提方法能正确识别不同振动信号的类型,具有较高的准确率,应用于光纤预警系统中有望提高对有害振动的识别性能,促进管道保护技术的发展.