论文部分内容阅读
针对植物高光谱图像各波段噪声强度不同,以及空间域和谱域均存在噪声污染的问题,提出了一种基于分组三维(3D)离散余弦变换(DCT)字典的稀疏表示去噪方法。首先分析了植物光谱特征,根据谱间相关性对波段进行分组;然后采用边缘块剔除的局部均值标准差法对高光谱图像进行噪声标准差估计,为去噪算法提供参考阈值;最后构建三维DCT字典的稀疏表示去噪方法,对植物高光谱图像进行去噪。实验结果表明,与原始数据和二维DCT字典去噪方法相比,谱域噪声评估中平均信噪比分别提高18.2dB和9.2dB。因此,该方法不仅具有较好的