论文部分内容阅读
Adam是目前深度神经网络训练中广泛采用的一种优化算法框架,同时使用了自适应步长和动量技巧,克服了SGD的一些固有缺陷.但即使对于凸优化问题,目前Adam也只是在线学习框架下给出了和梯度下降法一样的regret界,动量的加速特性并没有得到体现.这里针对非光滑凸优化问题,通过巧妙选取动量和步长参数,证明了Adam的改进型具有最优的个体收敛速率,从而说明了Adam同时具有自适应和加速的优点.通过求解l1范数约束下的hinge损失问题,实验验证了理论分析的正确性和在算法保持稀疏性方面的良好性能.