论文部分内容阅读
摘要:本文对“单项式乘多项式法则的再认识——因式分解”课程进行分析,力求在有效课时内为学生进行最透彻的讲解。
关键词:教学设计;因式分解;再认识
教学内容:
苏教版七年级下册第九章第5节第一课时“单项式乘多项式法则的再认识——因式分解(一)”。
教材分析:
1.教材的地位和作用。
本节课是“单项式乘多项式法则的再认识”第一课时,与整式乘法是互逆的过程。其知识基础是建立在学生已经掌握整式乘法运算,并且以小学知识里已经涉及相关分解因式之上的。其重要作用在之后的分式运算、化简和一元二次方程中皆有体现,是数与式运算中不可缺少的知识部分。
2.教学目标。
认知目标:①理解因式分解的概念和意义。②认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法(提公因式法)。
能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。
情感目标:培养学生接受矛盾的对立统一观点,独立思考、勇于探索的精神和实事求是的科学态度。
3.教学重点。
(1)理解因式分解的概念和意义。
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法(提公因式法)。
4.教学难点。
寻求因式分解的方法(提公因式法),并会应用去进行分解因式。
5.教学方法。
(1)采用以设疑探究的授课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。
(2)把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点、突破难点、提高能力。
(3)在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式教学,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。
6.设计理念。
(1)教学是多边互动过程,不仅重结果,更重过程;教学的重心是人而不是学科。
(2)人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
(3)建立在建构主义学习理论基础上。
教学过程及设计意图:
一、提出问题,创设情境
问题:看谁算得快?(投影出示问题)
(1)若a=101,b=99,则a2-b2=(a+b)(a-b)=(101+99)(101-99)=400.
(2)若a=99,b=-1,则a2-2ab+b2=(a-b)2=(99+1)2=10000.
(3)若x=-3,则20x2+60x=20x(x+3)=20×(-3)(-3+3)=0.
(设计意图:通过问题的提出,采用比赛的形式,增强学生的竞争意识,活跃课堂气氛,调动学生学习的积极性和主动性。)
二、观察分析,探究新知
类比小学学过的因数分解概念(例42=2×3×7),得出因式分解概念。
板书课题:§9.5因式分解
1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
(设计意图:通过对等式的观察比较,得出并加深对因式分解的概念的理解。)
2.练习:下列由左边到右边的变形,哪些是因式分解,哪些不是?为什么?
①(x+2)(x-2)=x2-4②x2-4=(x+2)(x-2)
③a2-2ab+b2=(a-b)2④3a(a+2)=3a2+6a
⑤3a2+6a=3a(a+2)⑥x2-4+3x=(x-2)(x+2)+3x
(设计意图:及时对因式分解的概念进行巩固。)
3.因式分解与整式乘法的关系:
因式分解:a+ab=a(1+b)
整式乘法:a(1+b)=a+ab
提出问题:观察并说出因式分解与整式乘法的关系。
(设计意图:通过因式分解和整式乘法的关系的比较,进一步加深对因式分解的概念的理解和掌握。通过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的能力,逆向思维能力及创新能力。发现问题,及时反馈。)
4.例:把下列各式分解因式。
(1)am+bm(2)6a3b-9a2b2c
(3)-2m3+8m2-12m
思考:如何利用整式乘法来探求因式分解方法的思路?
(设计意图:提出问题,让学生积极思考,活跃思维,分组讨论,培养他们观察问题、解决问题、协调合作的能力。)
5.提公因式法概念。
(1)公因式如何确定?
(2)提公因式时要注意什么?
(设计意图:提出问题,巩固学生对提公因式法的理解,引导学生抓住提公因式法的关键。)
6.练习:教材:90~91页第2、3、4题。
(设计意图:巩固学生对分解因式和提公因式法的掌握。)
7.回顾所得。
请大家自主概括:通过本节课的学习,你获得了什么?有哪些希望与大家共同注意的地方?
(设计意图:培养学生的概括、归纳能力,理清解题的一般步骤,落实重点,建立完整的知识结构。)
8.布置作业。
教材第91页习题1、2(其中第2题为选做题)。
(设计意图:不过多延伸本节课的知识,确保教材的设计意图,并确保学生的有效学习能力的提高,设计选做题是考虑到学生的差异性。)
教学评析与反思:
1.体现建构主义理论。把因式分解的知识建立在学生小学所学过的因数分解和前几节单项式乘多项式法则的基础上进行,不强迫学生去重复接受已有的知识,通过教学设计引导学生去自主发现因式分解的概念和提公因式法并进行应用。
2.体现新课程下教师的角色定位。本节课采用以设疑探究的授课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。全面体现了教师在新课程下作为“引导者、组织者和合作者”的角色。摆脱了传统教学中的教师为主导的教学模式,促使学生形成学习主人翁的意识,培养了学生的自主探究能力和小组合作能力。
3.体现了知识教学中的螺旋上升结构。本节知识以整式乘法和小学因数分解为基础,在类似知识点(分解)逐渐加深对分解因式概念的认知,是符合学生认知规律的,有利于学生形成较为系统的知识系统,便于学生达到学习效果。
关键词:教学设计;因式分解;再认识
教学内容:
苏教版七年级下册第九章第5节第一课时“单项式乘多项式法则的再认识——因式分解(一)”。
教材分析:
1.教材的地位和作用。
本节课是“单项式乘多项式法则的再认识”第一课时,与整式乘法是互逆的过程。其知识基础是建立在学生已经掌握整式乘法运算,并且以小学知识里已经涉及相关分解因式之上的。其重要作用在之后的分式运算、化简和一元二次方程中皆有体现,是数与式运算中不可缺少的知识部分。
2.教学目标。
认知目标:①理解因式分解的概念和意义。②认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法(提公因式法)。
能力目标:由学生自行探求解题途径,培养学生观察、分析、判断能力和创新能力,发展学生智能,深化学生逆向思维能力和综合运用能力。
情感目标:培养学生接受矛盾的对立统一观点,独立思考、勇于探索的精神和实事求是的科学态度。
3.教学重点。
(1)理解因式分解的概念和意义。
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法(提公因式法)。
4.教学难点。
寻求因式分解的方法(提公因式法),并会应用去进行分解因式。
5.教学方法。
(1)采用以设疑探究的授课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。
(2)把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点、突破难点、提高能力。
(3)在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式教学,鼓励学生充分地动脑、动口、动手,积极参与到教学中来,充分体现了学生的主动性原则。
6.设计理念。
(1)教学是多边互动过程,不仅重结果,更重过程;教学的重心是人而不是学科。
(2)人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
(3)建立在建构主义学习理论基础上。
教学过程及设计意图:
一、提出问题,创设情境
问题:看谁算得快?(投影出示问题)
(1)若a=101,b=99,则a2-b2=(a+b)(a-b)=(101+99)(101-99)=400.
(2)若a=99,b=-1,则a2-2ab+b2=(a-b)2=(99+1)2=10000.
(3)若x=-3,则20x2+60x=20x(x+3)=20×(-3)(-3+3)=0.
(设计意图:通过问题的提出,采用比赛的形式,增强学生的竞争意识,活跃课堂气氛,调动学生学习的积极性和主动性。)
二、观察分析,探究新知
类比小学学过的因数分解概念(例42=2×3×7),得出因式分解概念。
板书课题:§9.5因式分解
1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
(设计意图:通过对等式的观察比较,得出并加深对因式分解的概念的理解。)
2.练习:下列由左边到右边的变形,哪些是因式分解,哪些不是?为什么?
①(x+2)(x-2)=x2-4②x2-4=(x+2)(x-2)
③a2-2ab+b2=(a-b)2④3a(a+2)=3a2+6a
⑤3a2+6a=3a(a+2)⑥x2-4+3x=(x-2)(x+2)+3x
(设计意图:及时对因式分解的概念进行巩固。)
3.因式分解与整式乘法的关系:
因式分解:a+ab=a(1+b)
整式乘法:a(1+b)=a+ab
提出问题:观察并说出因式分解与整式乘法的关系。
(设计意图:通过因式分解和整式乘法的关系的比较,进一步加深对因式分解的概念的理解和掌握。通过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的能力,逆向思维能力及创新能力。发现问题,及时反馈。)
4.例:把下列各式分解因式。
(1)am+bm(2)6a3b-9a2b2c
(3)-2m3+8m2-12m
思考:如何利用整式乘法来探求因式分解方法的思路?
(设计意图:提出问题,让学生积极思考,活跃思维,分组讨论,培养他们观察问题、解决问题、协调合作的能力。)
5.提公因式法概念。
(1)公因式如何确定?
(2)提公因式时要注意什么?
(设计意图:提出问题,巩固学生对提公因式法的理解,引导学生抓住提公因式法的关键。)
6.练习:教材:90~91页第2、3、4题。
(设计意图:巩固学生对分解因式和提公因式法的掌握。)
7.回顾所得。
请大家自主概括:通过本节课的学习,你获得了什么?有哪些希望与大家共同注意的地方?
(设计意图:培养学生的概括、归纳能力,理清解题的一般步骤,落实重点,建立完整的知识结构。)
8.布置作业。
教材第91页习题1、2(其中第2题为选做题)。
(设计意图:不过多延伸本节课的知识,确保教材的设计意图,并确保学生的有效学习能力的提高,设计选做题是考虑到学生的差异性。)
教学评析与反思:
1.体现建构主义理论。把因式分解的知识建立在学生小学所学过的因数分解和前几节单项式乘多项式法则的基础上进行,不强迫学生去重复接受已有的知识,通过教学设计引导学生去自主发现因式分解的概念和提公因式法并进行应用。
2.体现新课程下教师的角色定位。本节课采用以设疑探究的授课方式,激发学生的求知欲望,提高学生的学习兴趣和学习积极性。全面体现了教师在新课程下作为“引导者、组织者和合作者”的角色。摆脱了传统教学中的教师为主导的教学模式,促使学生形成学习主人翁的意识,培养了学生的自主探究能力和小组合作能力。
3.体现了知识教学中的螺旋上升结构。本节知识以整式乘法和小学因数分解为基础,在类似知识点(分解)逐渐加深对分解因式概念的认知,是符合学生认知规律的,有利于学生形成较为系统的知识系统,便于学生达到学习效果。