论文部分内容阅读
针对化工过程灰箱建模存在的精确度差、速度慢、计算复杂度高等问题,对现行模糊C-均值聚类算法进行了改进,提出了一种快速全局优化的(用于建模的数据训练集)模糊聚类算法.该算法具有不依赖初始条件、收敛速度快等特点.实验结果表明,利用快速全局优化模糊聚类算法得到的数据,在灰色预测的时间和数据准确性方面都有了显著提高,计算机仿真实验表明了该算法的有效性.