论文部分内容阅读
【摘要】在高中理科各科目中,物理是相对较难学习的学科,学过高中物理的大部分同学,特别是物理成绩中差等的同学,总有这样的疑问:"上课听得懂,听得清,就是在课下做题时不会。"这是个普遍的问题,也是值得物理教师和同学们认真研究的问题。本文介绍物理学习中出现的问题的常见的几种学习方法。
【关键词】理想模型;等效替代法;微元法;近似处理方法
【中图分类号】G642.0
引言:在运用物理知识解决实际问题的过程中,人们逐步积累和形成了物理学中处理问题的方法,在物理教学中,我们一定要使学生逐步领会和掌握这些方法。下面笔者就介绍几种在高中物理中,常用的处理问题的方法:
一、把研究对象、过程视为理想模型
在高中物理中,我们所研究的对象或物理过程可以说都是理想模型,例如在研究对象上有:质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型;又如在研究物理过程时有:匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运动、简谐波、弹性碰撞、自由落体运动、竖直上抛运动等等。
【点拨解疑】 由题意,研究对象必然是电子,其对象模型显然是带电的质点;对其过程模型的构建,可按先后顺序考虑;首先是在电场中的变加速运动,这是我们能处理的模型;接着进入电容器,遇到偏转电场,由于电容器上加的是变化电压,那么其中的电场是不稳定的,随时间变化的,电子沿电场方向的运动不是匀变速运动,这是我们没办法处理的。但考虑到电子加速后,速度很大,通过电容器的时间极短,如果忽略这一段时间内的电压变化,那么可把电子通过电容器的过程抽象为带电质点在稳定匀强电场中的物理模型,电场的强度取决于进入电场的时机。
现在有两个电容器,而且要求电子最后不偏转,那么电子在电容器中的运动是否有更具体的物理模型呢?模型很简单,就是进入每个电容器的时机都正好是电场强度等于零的时候,电子作匀速直线运动通过两个电容器。
点评:该题让我们体验到了理想化方法的重要性。带电粒子在电容器中运动,一般是要考虑偏转,但该题却是不偏转,因此构想出这一模型确是该题的难点。
有的时候例题还会取自日常社会生活问题,需要同学们把熟悉的实际问题转化为物理模型,从而运用有关定理、定律来解决它,这也是对实际应用能力的训练。
二、等效替代法
等效法就是在保证某一方面效果相同的前提下,用理想的、熟悉的、简单的物理对象、物理过程、物理现象替代实际的、陌生的、复杂的物理对象、物理过程、物理现象的思想方法。合力与分力、运动的合成与分解、电阻的串联与并联、交流电的有效值等都是等效法在物理学中的实际应用。
等效法在物理解题中也有广泛的应用,主要有:物理模型的等效替代;物理过程的等效替代;作用效果的等效替代。
在应用等效法解题时,应知道两个事物的等效不是全方位的,只是局部的,特定的、某一方面的等效。因此在具体的问题中必须明确哪一方面等效,这样才能把握住等效的条件和范围。
在中学物理练习中,经常需要运用等效法处理问题。我们应当有意识地训练学生,使他们掌握这种处理问题的方法。
三、微元法
四、近似处理法
在中学物理研究问题时,我们实际上常常用到近似处理这种方法。例如,我们在研究电荷之间的相互作用力时,我们往往研究电荷之间的静电力,而不考虑电荷之间的万有引力,这时因为电荷之间的万有引力远小于静电力,可以忽略不计。在进行物理实验时,我们也常常忽略一些次要因素,或忽略相对很小的量,这也是近似处理。再比如,对打击碰撞问题,常常有学生问:重力到底考虑不考虑?这也要视具体情况而定的。
除了上述几种方法外,像分析-综合法、临界分析法、反证法、图像法等等,也是在中学物理中常用的处理问题的方法,教师在平时教学过程中,应逐步教给学生,同时引导学生思考和总结,这样才有利于学生处理物理问题,真正做到举一反三的效果。
参考文献
[1]阎金铎,田世昆.《中学物理教学概论》,高等教育出版社,1999年
[2]许国梁,《中学物理教材教法》,江苏教育出版社,1985年
【关键词】理想模型;等效替代法;微元法;近似处理方法
【中图分类号】G642.0
引言:在运用物理知识解决实际问题的过程中,人们逐步积累和形成了物理学中处理问题的方法,在物理教学中,我们一定要使学生逐步领会和掌握这些方法。下面笔者就介绍几种在高中物理中,常用的处理问题的方法:
一、把研究对象、过程视为理想模型
在高中物理中,我们所研究的对象或物理过程可以说都是理想模型,例如在研究对象上有:质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型;又如在研究物理过程时有:匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运动、简谐波、弹性碰撞、自由落体运动、竖直上抛运动等等。
【点拨解疑】 由题意,研究对象必然是电子,其对象模型显然是带电的质点;对其过程模型的构建,可按先后顺序考虑;首先是在电场中的变加速运动,这是我们能处理的模型;接着进入电容器,遇到偏转电场,由于电容器上加的是变化电压,那么其中的电场是不稳定的,随时间变化的,电子沿电场方向的运动不是匀变速运动,这是我们没办法处理的。但考虑到电子加速后,速度很大,通过电容器的时间极短,如果忽略这一段时间内的电压变化,那么可把电子通过电容器的过程抽象为带电质点在稳定匀强电场中的物理模型,电场的强度取决于进入电场的时机。
现在有两个电容器,而且要求电子最后不偏转,那么电子在电容器中的运动是否有更具体的物理模型呢?模型很简单,就是进入每个电容器的时机都正好是电场强度等于零的时候,电子作匀速直线运动通过两个电容器。
点评:该题让我们体验到了理想化方法的重要性。带电粒子在电容器中运动,一般是要考虑偏转,但该题却是不偏转,因此构想出这一模型确是该题的难点。
有的时候例题还会取自日常社会生活问题,需要同学们把熟悉的实际问题转化为物理模型,从而运用有关定理、定律来解决它,这也是对实际应用能力的训练。
二、等效替代法
等效法就是在保证某一方面效果相同的前提下,用理想的、熟悉的、简单的物理对象、物理过程、物理现象替代实际的、陌生的、复杂的物理对象、物理过程、物理现象的思想方法。合力与分力、运动的合成与分解、电阻的串联与并联、交流电的有效值等都是等效法在物理学中的实际应用。
等效法在物理解题中也有广泛的应用,主要有:物理模型的等效替代;物理过程的等效替代;作用效果的等效替代。
在应用等效法解题时,应知道两个事物的等效不是全方位的,只是局部的,特定的、某一方面的等效。因此在具体的问题中必须明确哪一方面等效,这样才能把握住等效的条件和范围。
在中学物理练习中,经常需要运用等效法处理问题。我们应当有意识地训练学生,使他们掌握这种处理问题的方法。
三、微元法
四、近似处理法
在中学物理研究问题时,我们实际上常常用到近似处理这种方法。例如,我们在研究电荷之间的相互作用力时,我们往往研究电荷之间的静电力,而不考虑电荷之间的万有引力,这时因为电荷之间的万有引力远小于静电力,可以忽略不计。在进行物理实验时,我们也常常忽略一些次要因素,或忽略相对很小的量,这也是近似处理。再比如,对打击碰撞问题,常常有学生问:重力到底考虑不考虑?这也要视具体情况而定的。
除了上述几种方法外,像分析-综合法、临界分析法、反证法、图像法等等,也是在中学物理中常用的处理问题的方法,教师在平时教学过程中,应逐步教给学生,同时引导学生思考和总结,这样才有利于学生处理物理问题,真正做到举一反三的效果。
参考文献
[1]阎金铎,田世昆.《中学物理教学概论》,高等教育出版社,1999年
[2]许国梁,《中学物理教材教法》,江苏教育出版社,1985年