论文部分内容阅读
为实现蛋鸡养殖过程有害气体浓度监测,改善复杂环境下常用气体传感器之间因存在交叉敏感性而导致测量数据不准确的问题,设计了基于IPSO优化BP神经网络模型的有害气体监测系统。选用无线Zig Bee模块、传感器模块和STM32模块,搭建了蛋鸡舍各点数据采集硬件平台,利用GPRS远程通信模块将平台采集到的数据传输至服务器,同时开发手机APP软件,对有害气体进行实时监测。利用权重线性递减及改进学习因子的IPSO算法,对BP神经网络进行优化,利用优化后的网络对气体传感器采集到的数据进行处理,有效提高了有害气体的