论文部分内容阅读
对微博文本的多元情感分类问题进行了研究.针对现有的多元情感词典不能很好地覆盖微博文本中情感词的不足,结合特定的情感符号和基于卡方统计量的度量方法,实现对现有的多元情感词典的扩充;针对情感词典无法有效考察文本的上下文语境信息的问题,引入word2vec模型实现情感词和其所在微博语句的向量化表达.在此基础上,利用KNN分类器实现微博句子级的多元情感分类.实验结果表明,扩充情感词典及引入word2vec模型均有助于提升微博文本多元情感分类的效果.