【摘 要】
:
基于2010—2019年的MODIS卫星影像数据与实地调查,在地理信息技术的支持下,从宏观角度实现了塔里木河流域土壤湿度的遥感监测。研究结果表明,MODIS第7波段的反射率与土壤湿度呈负相关,塔里木河流域上、中、下游土壤湿度在年内空间上、时间上差异较大。同期不同河段的对比分析:塔里木河流域上游土壤湿度>中游土壤湿度>下游土壤湿度。同河段不同时期对比分析:塔里木河上游土壤湿度增加量>塔里木河中游土壤
论文部分内容阅读
基于2010—2019年的MODIS卫星影像数据与实地调查,在地理信息技术的支持下,从宏观角度实现了塔里木河流域土壤湿度的遥感监测。研究结果表明,MODIS第7波段的反射率与土壤湿度呈负相关,塔里木河流域上、中、下游土壤湿度在年内空间上、时间上差异较大。同期不同河段的对比分析:塔里木河流域上游土壤湿度>中游土壤湿度>下游土壤湿度。同河段不同时期对比分析:塔里木河上游土壤湿度增加量>塔里木河中游土壤湿度增加量>塔里木河下游土壤湿度增加量;塔里木河流域土壤(表层0~10cm)湿度年内季节性变化较大,在2
其他文献
屏幕内容图像是一种组合图像,由计算机将图形、文字和图像组合起来而形成。由于人类视觉系统是从粗略到精细进行图像信息的提取,本文提出一种基于多尺度特征的无参考屏幕内容图像质量评估算法。屏幕内容图像中包含大量的图形和文本内容,以及色彩和布局结构信息,因此我们提取失真图像的边缘特征、结构特征和亮度特征。然后将多个图像尺度上提取的特征进行拼接,作为最终的失真图像质量感知特征。最后使用随机森林回归方法训练得到
基于太赫兹技术的安检设备具有独特的无损伤检测特性,在安防领域具有良好的发展前景。太赫兹图像分辨率低,特征信息有限,且高亮区域多,目标与背景亮度相近,为太赫兹图像中的目标检测带来了一定的困难。针对此,本文提出一种融合多尺度注意力的目标检测框架MSAD-SSD,在SSD算法的基础上,采用ResNet101作为特征提取网络,并设计一种多尺度注意力模块。该模块采用多支路膨胀卷积进行多尺度特征提取,扩展网络
为了克服单一神经网络模型提取表情特征困难,以及堆叠深层网络结构会造成训练过程复杂、参数冗余等问题,本文提出了一种引入注意力机制的轻量级CNN通道和卷积自编码器预训练通道的双通道模型。在轻量级CNN通道中以具有残差思想的深度可分离卷积结构进行深层次特征提取并且减少了模型参数量,还引入了通道域注意力机制使得该通道能够学习到更有用的特征;同时使用卷积自编码器对输入人脸表情图像进行无监督预处理,使得模型提
针对当前文档图像透视变形矫正算法抗干扰性差,矫正效果不佳等问题,本文提出一种基于BRISK特征点检测与匹配的文档图像矫正算法,称之为模板图像匹配矫正算法(Template Image Matching Rectification,TIMR)。该算法仅需制作目标领域内的单张矫正模板图像,并结合BRISK算法与本文提出的双重特征点过滤算法实现该领域所有透视变形文档图像的矫正处理。其中,双重过滤算法包含
从彩图/照片生成素描,其生成素描图像的轮廓、阴影与铅笔素描画相比不够清晰,精准度也不高.由于素描笔画类型多样,阴影结构复杂.为此,本文提出了一种人脸照片到铅笔画的转换方法,设计并实现了一个双分支训练生成对抗网络模型,其轮廓分支提高生成素描图像的轮廓清晰度;另一阴影分支处理素描的纹理与阴影部分,并且保持素描画的风格.最后,本文对不同类型的素描风格转换进行了实验,结果表明提出的方法比现有方法有更好的素
本文提出了一种耦合粒子图像测速(Particle Image Velocimetry,PIV)实验误差的连续伴随数据同化算法,通过优化目标损失函数,增强算法在不同误差场景下的鲁棒性。为了验证该算法的有效性,本文先对已知PIV流场植入合成误差进行同化对比测试,继而对PIV互相关算法的不同参数设置所获得的流场进行同化研究。结果表明,相比于原连续伴随数据同化,耦合PIV实验误差的同化算法能够对实验观测数
针对YOLOv4-Tiny算法目标检测网络参数量和计算量大而导致不能在资源较少平台部署的问题,提出一种以GhostNet残差结构作为主干的轻量级目标检测网络(YOLO-GhostNet)。该网络采用GhostNet结构思想将普通卷积分成了两步,降低了计算所需资源的同时降低了参数量。其中采用GhostNet所构建的残差结构的YOLO-GhostNet经过BN(BatchNormalization)层
多表征自适应网络(MRAN)用于无监督学习取得了显著成效。但MRAN的特征提取只关注了域在空间结构上的联系而忽略了特征通道之间的联系,在进行无监督领域自适应(UDA)分类时,决策边界附近存在大量混淆数据的情况,当使用信息熵最小化对混淆数据进行分类时,往往会产生错误分类。针对这一问题,提出了基于批量核范数最大化的多表征挤压激励自适应网络(Multi-Representation Squeeze-Ex
针对行人重识别复杂场景而引起的提取特征辨别能力弱的问题,提出了一种多尺度多粒度融合网络(Multi-scale and Multi-granularity Fusion Network, MMF-Net),旨在更全面和有效地利用特征信息。MMF-Net使用多分支结构学习了不同尺度和不同粒度的特征,并以局部特征学习去精细化全局特征,加强了全局和局部的关联性;在网络低层引入语义监督模块,提升了网络的表
针对人工提取植物病害图像特征存在效率低、识别率低、成本高等问题,提出一种基于DenseNet网络的现代卷积神经网络架构FI-DenseNet,旨在对多种类的植物病害图像达到高精准的识别准确率。引入Focal损失函数对DenseNet网络进行改进,使得训练模型的注意力集中于难分类的样本。FI-DenseNet网络可以增强特征传递、进行深层训练或有效改善过拟合问题。采用的数据集有87867张植物病害图