论文部分内容阅读
针对当前植物叶部病害识别模型易受阴影、遮挡物及光线强度干扰,特征提取具有盲目和不确定性的问题,该研究构建一种基于反卷积引导的VGG网络(Deconvolution-GuidedVGGNet,DGVGGNet)模型,同时实现植物叶部病害种类识别与病斑分割。首先使用VGGNet计算多分类交叉熵损失进行病害分类训练,得到病害分类结果;其次设计反向全连接层,将分类结果恢复为特征图形式;然后采用上采样与卷积操作相结合的方法实现反卷积,利用跳跃连接融合多种特征恢复图像细节;最后使用少量病斑监督,对每个像素点使用