论文部分内容阅读
Semiconductor technology and packaging is advancing rapidly toward system integration where the packaging is co-designed and co-manufactured along with the wafer fabrication.However,materials issues,in particular the mesoscale microstructure,have to date been excluded from the integrated product design cycle of electronic packaging due to the myriad of materials used and the complex nature of the material phenomena that require a multiphysics approach to describe.In the context of the materials genome initiative,we present an overview of a series of studies that aim to establish the linkages between the material microstructure and its responses by considering the multiple perspectives of the various multiphysics fields.The microstructure was predicted using thermodynamic calculations,sharp interface kinetic models,phase field,and phase field crystal modelingtechniques.Based on the predicted mesoscale microstructure,linear elastic mechanical analyses and electromigration simulations on the ultrafine interconnects were performed.The microstructural index extracted by a method based on singular value decomposition exhibits a monotonous decrease with an increase in the interconnect size.An artificial neural network-based fitting revealed a nonlinear relationship between the microstructure index and the average von Mises stress in the ultrafine interconnects.Future work to address the randomness of microstructure and the resulting scatter in the reliability is discussed in this study.
Semiconductor technology and packaging is advancing rapidly toward system integration where the packaging is co-designed and co-manufactured along with the wafer fabrication. However, materials issues, in particular the mesoscale microstructure, have to date been excluded from the integrated product design cycle of electronic packaging due to the myriad of materials used and the complex nature of the material phenomena that require a multiphysics approach to describe in. the context of the materials genome initiative, we present an overview of a series of studies that aim to establish the linkages between the material microstructure and its responses by considering the multiple perspectives of the various multiphysics fields. microstructure was predicted using thermodynamic calculations, sharp interface kinetic models, phase fields, and phase field crystal modeling techniques. Based on the predicted mesoscale microstructure, linear elastic mechanical analyzes and electromigration simulations on the ultrafine interconnects were performed. The microstructural index extracted by a method based on singular value decomposition exhibits a monotonous decrease with an increase in the interconnect size. An artificial neural network-based fitting revealed a nonlinear relationship between the microstructure index and the average von Mises stress in the ultrafine interconnects. Future work to address the randomness of microstructure and the resulting scatter in the reliability is discussed in this study.