Biomolecule-assisted Solvothermal Synthesis and Enhanced Visible Light Photocatalytic Performance of

来源 :武汉理工大学学报(材料科学版)(英文版) | 被引量 : 0次 | 上传用户:UltraSparc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Novel Bi2S3/BiOCl photocatalysts were successfully synthesized via a facile biomolecule-assisted solvothermal method and biomolecule L-cysteine was used as the sulfur source. The structures, morphology, and optical properties of the synthesized samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). The presence of Bi2S3 in the Bi2S3/BiOCl composites could not only improve the optical properties but also enhance the photocatalytic activities for the degradation of Rhodamine B (RhB) under visible-light irradiation (λ > 420 nm) as compared with single Bi2S3 and BiOCl. Especially, the sample displayed the best performance of the photodegradation when the feed molar ratio of BiCl3 and L-cysteine was 2.4:1, which was about 10 times greater than that of pure BiOCl. The enhanced photocatalytic activities could be ascribed to the effective separation of photoinduced electrons and holes and the photosensitization of dye. Moreover, the possible photodegradation mechanism was also proposed, and the results revealed that the active holes (h+) and superoxide radicals (?O2?) were the main reactive species during photocatalytic degradation.
其他文献
Soda-lime glasses were treated by electric field-assisted diffusion (EFAD) process. The mechanical properties and structural evolution on both glass anode and cathode surfaces were investigated, respectively. It was found that the EFAD resulted in the for
Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing (LSP) was investigated. The residual stress of the specimens treated with LSP was assessed by X-ray diffraction method. The microstructure and fracture morphology were cha
Extensive researches have been carried out on the conventional sulfate attack, while it has been found that the thaumasite form of sulfate attack (TSA), sulfate attack at low temperature, has just been discovered and its mechanism is not well understood s
Single-component epoxy cement system is an interesting material used in construction engineering, and it is different from traditional two-component epoxy-cement system. We studied the interaction mechanism of single-component epoxy-cement system only in