论文部分内容阅读
采用典型多目标进化算法-NSGA-II对从任务角度进行抽象建模所得到的Agent联盟模型进行生成优化,并针对Agent联盟生成存在的特点,将Pareto最优概念与多目标优化相结合对NSGA-II算法进行改进,从而实现兼顾联盟收益、开销、时间约束等多个目标。仿真对比实验结果表明,算法运行一次可以获得多个Pareto最优解,为各个目标之间权衡分析提供了有效的工具,在满足性能要求下,可为联盟生成提供满足多个设计目标的全局优化方案,对联盟实际应用具有借鉴与应用价值。对联盟实际应用具有借鉴与应用价值。