论文部分内容阅读
在基于机器视觉实现蘑菇自动化采摘过程中,由于蘑菇苗床背景复杂多样,蘑菇群落之间尺度、形状差异大,且相互间存在复杂粘连,造成采摘位置定位困难,针对该问题,提出了以Harris角点为纹理特征的背景过滤算法,实现菌丝、木屑、杂草等干扰因素下的前景目标的准确提取;继而针对粘连蘑菇的尺度差异,提出了一种迭代方法搜索前景距离图中的区域极值点,在此基础上采用基于标记的分水岭算法实现粘连蘑菇的分割;最后利用椭圆拟合对蘑菇边界和中心坐标进行定位.通过实际场景中的蘑菇样本图片进行测试,证明算法定位准确性达到86.3%,