论文部分内容阅读
针对目前已有的文本分类方法未考虑文本内部词之间的语义依存信息而需要大量训练数据的问题,提出基于语义依存分析的图网络文本分类模型TextSGN。首先对文本进行语义依存分析,对语义依存关系图中的节点(单个词)和边(依存关系)进行词嵌入和one-hot编码;在此基础上,为了对语义依存关系进行快速挖掘,提出一个SGN网络块,通过从结构层面定义信息传递的方式来对图中的节点和边进行更新,从而快速地挖掘语义依存信息,使得网络更快地收敛。在多组公开数据集上训练分类模型并进行分类测试,结果表明,Text SGN模型在