论文部分内容阅读
日长变化具有复杂的时变特性,传统的线性时间序列分析方法往往难以取得良好的预报效果.采用非线性人工神经网络技术对日长变化进行预报,网络模型的拓扑结构由最小均方误差法来确定.考虑到日长变化与大气环流运动间的密切关系,在神经网络预报模型中引入轴向大气角动量序列.结果表明,联合日长和大气角动量序列,比起单独采用日长资料,预报精度得到显著的提高.