论文部分内容阅读
线性判别分析是一种有效的特征提取方法,但其存在两个缺陷:小样本问题和秩限制问题。为了解决上述问题,提出一种改进的线性判别分析算法ILDA。该方法引进类间离散度标量和类内离散度标量,通过求解样本各维的权值达到特征提取的目的。若干标准人脸数据集和人工数据集上的实验表明ILDA在特征提取方面的有效性。