论文部分内容阅读
【中图分类号】R730.55【文献标识码】A【文章编号】1632-5281(2015)11
【关键词】肿瘤;放射治疗;物理技术;新进展
近年来,作为肿瘤治疗的主要手段之一,肿瘤的放射放疗有了很大的发展,具体体现在放射物理、放射生物和放疗临床三大方面,现分述如下:
1立体定向治疗的实现
基于电子计算机精度提高,双螺旋CT及高清晰度MRI出现,因此立体定向治疗应运而生,目前使用的γ-刀,从某种意义来说是一个立体定向放射手术过程(Sterol Radiation Surgery,SRS),它通过聚焦,等中心照准,于单次短时间或多次较长时间给予肿瘤超常规致死量治疗,达到摧毁瘤区细胞的目的,γ刀利用约30~200个钴源,在等中心条件下,从立体不同方向位置,在短距离内对细小肿瘤(或良性肿瘤,先天畸形等病灶,一般约1~2cmΦ)进行一次或多次照射,给予总剂量超过肿瘤及正常组织耐受量,用准确聚焦的办法使多个60Co源的剂量集中在靶区,分射束聚焦使周围正常组织受量仍在可能的耐受量中,由于采用电脑、CT,以及准确的立体设计定位,因而射野边界锐利可达±2mm以下,确保了非瘤区正常组织安全。应用于脑部的良性小肿瘤和先天性畸形效果尤佳,应用于脑干等生命禁区也取得了效果。但目前许多单位滥用,不严格控制适应症,因此造成了许多后遗症和并发症,使γ-刀的应用与初始设计原意偏离了轨道。
此外,采用X-刀(加速器)其应用电脑进行定位,聚焦等技术与γ-刀原理相近,它除应用在头部肿瘤(如γ-刀)外,还应用在胸、腹盆等区域,应用范围比γ-刀广,应用效率较γ-刀要好。但立体照射(γ,X刀)技术应用中还存在许多问题,如放射生物学中的远期并发症,肿瘤的局部控制问题,远处转移仍未得到解决,因此想单*一种这样机器是不能完全解决放射治疗的所有问题的。
2三维适形放疗技术
三维适形放疗技术,英文简称3-DCRT,该技术在应用时的理论和技术基础与上段中所提到的γ-刀技术有所类似。三维适形放疗技术是在平面二维定位技术上发展起来的,实际研发时所强调的内容并不是平面二维定位,而是立体三维定位,并且能够在应用过程中随着射野的变化而不断发生适形变化,达到适应肿瘤形状并随其结构变形而不断变动的目的。在最近几年时间内,相关研究人员在原有的立体定向γ-刀治疗技术以及计算机芯片的设计程序中,开发了利用芯片对叶光栏进行控制的功能,实现了计算机芯片对叶光栏适形变化的同步控制,从而使得3-DCRT治疗技术正式进行实用阶段。3-DCRT治疗技术在应用时可对肿瘤或肿瘤细胞进行分割、超分割以及加速超分割等多种方式,代替原有的常规治疗放疗机器,达到所下达的严格的肿瘤治疗任务。3值得一提的是,基于3-DCRT治疗技术下的治疗效果,分割精确度等否明显优于原来的常规放疗机,能够保持射影的形状和肿瘤病变靶区的投影的一致性。
3调强适形放疗
国内外同行评价这种技术为21世纪放射治疗技术的主流。三维适形治疗(3-DCRT)所采用的同步可控多叶光栅,三维适形定位这种技术在IMRT中已成为基础技术。但其不同之处在于采用:
(1)逆向算法设计(Inversereckon Planning)这是IMRT除三维适形之外,为更精确起见所插入的必要步骤,它不仅正面方向的精确剂量计算,而且从逆方向算法来进行验证和审核,使用的高能X线,电子束、质子束等放射源,其射野绕人体用连续或固定集束,在旋转照射方向上达到更精确边界,因而它可以提高强度,达到适应肿瘤形状高输出剂量,三维数字图象重建(3DRR-3Dimension Reckon-Picture Reconstruction)功能,使三维图象中靶区等重要器官与图象吻合,剂量分布合适与否一目了然。(2)有冠状、矢状、横断面的图象及剂量分布,还要能给出任意斜切面的图形及剂量分布,并随时可以显示给治疗人员,设计人员以及医生,它使视野方向的观视(BEV Beam-field Equation Vision)和医生反方向的观视(REV-Reaction Equation Vision)都成一致。(3)模拟选择——在安排和设计射野时必须具有模拟类似常规模拟定位机射野的选择功能,包括准直器种类,(独立式、对称式)和多叶准直器即多叶光栅(LMC-Multiple leaves collimator),大小,放置射野档块和楔形滤过板等。(4)治疗方案确定后,将各项条件输入CT模拟治疗(CT-Simulator),CT的模拟机应能接受上述条件。(5)验证,择优方案选择后将信息转至治疗机电脑按上述条件运转,将各种附加条件如机架,准直器,床移动范围,射野大小,多叶光栅叶片运动及调整机匹配,这样整个过程就完成了。所谓调强适形放射技术就是从固定视野上的物理条件出发,把其准确性调至最高,将平面二维准确调至三维更准确方向,在三维补偿照准方面调至最精确,给到最大足量。从诊断、设计实施和多种补偿手段,各种运动射束的调强,使射野边界锐利,界限明确,达到最高限度的准确定位,最高准确剂量达到靶,高准确度执行预定计划,从而可以超过SRT及SRS的准确治疗方式,又可克服SRT及SRS的明显缺陷。目前在美国已有部分样机试用。它应该是代表明天放射治疗机的方向。也是3-DCRT的发展。
4结论
事实上,伴随着我国医学事业以及科学技术的不断发展,医学研究业关于肿瘤放射放疗的技术水平也已经得到了较大程度上的提高。本篇文中所分析的仅仅只是肿瘤放射放疗技术中的其中一种,即近几年类放射治疗物理技术的新进展,对生物学以及临床研究学两方面的新进展并没有作具体研究,在这里也暂且对其忽略不计。最后需要强调的是,肿瘤放射放疗技术的最终目的是诊治和消除肿瘤,避免肿瘤对患者生命安全产生威胁,保护患者生命。所以从这一点来看,把握好实际情况,全面提升肿瘤的整体治疗效果才是放射放疗中应该注意的一个首要问题。
参考文献
[1]于金民、袁双虎.图像引导放射治疗研究及发展.中华肿瘤杂志,2006,28(2):81-83
[2]王艳阳、傅小龙.CT在影像引导下放疗中应用的历史与现状.中国癌症杂志,2006,16(6), 448-453
[3] 李娅,张明,陈彦,等. 多媒体技术在放射肿瘤学教学中的应用[J]. 中国中医药现代远程教育,2010,8(11):113-114
【关键词】肿瘤;放射治疗;物理技术;新进展
近年来,作为肿瘤治疗的主要手段之一,肿瘤的放射放疗有了很大的发展,具体体现在放射物理、放射生物和放疗临床三大方面,现分述如下:
1立体定向治疗的实现
基于电子计算机精度提高,双螺旋CT及高清晰度MRI出现,因此立体定向治疗应运而生,目前使用的γ-刀,从某种意义来说是一个立体定向放射手术过程(Sterol Radiation Surgery,SRS),它通过聚焦,等中心照准,于单次短时间或多次较长时间给予肿瘤超常规致死量治疗,达到摧毁瘤区细胞的目的,γ刀利用约30~200个钴源,在等中心条件下,从立体不同方向位置,在短距离内对细小肿瘤(或良性肿瘤,先天畸形等病灶,一般约1~2cmΦ)进行一次或多次照射,给予总剂量超过肿瘤及正常组织耐受量,用准确聚焦的办法使多个60Co源的剂量集中在靶区,分射束聚焦使周围正常组织受量仍在可能的耐受量中,由于采用电脑、CT,以及准确的立体设计定位,因而射野边界锐利可达±2mm以下,确保了非瘤区正常组织安全。应用于脑部的良性小肿瘤和先天性畸形效果尤佳,应用于脑干等生命禁区也取得了效果。但目前许多单位滥用,不严格控制适应症,因此造成了许多后遗症和并发症,使γ-刀的应用与初始设计原意偏离了轨道。
此外,采用X-刀(加速器)其应用电脑进行定位,聚焦等技术与γ-刀原理相近,它除应用在头部肿瘤(如γ-刀)外,还应用在胸、腹盆等区域,应用范围比γ-刀广,应用效率较γ-刀要好。但立体照射(γ,X刀)技术应用中还存在许多问题,如放射生物学中的远期并发症,肿瘤的局部控制问题,远处转移仍未得到解决,因此想单*一种这样机器是不能完全解决放射治疗的所有问题的。
2三维适形放疗技术
三维适形放疗技术,英文简称3-DCRT,该技术在应用时的理论和技术基础与上段中所提到的γ-刀技术有所类似。三维适形放疗技术是在平面二维定位技术上发展起来的,实际研发时所强调的内容并不是平面二维定位,而是立体三维定位,并且能够在应用过程中随着射野的变化而不断发生适形变化,达到适应肿瘤形状并随其结构变形而不断变动的目的。在最近几年时间内,相关研究人员在原有的立体定向γ-刀治疗技术以及计算机芯片的设计程序中,开发了利用芯片对叶光栏进行控制的功能,实现了计算机芯片对叶光栏适形变化的同步控制,从而使得3-DCRT治疗技术正式进行实用阶段。3-DCRT治疗技术在应用时可对肿瘤或肿瘤细胞进行分割、超分割以及加速超分割等多种方式,代替原有的常规治疗放疗机器,达到所下达的严格的肿瘤治疗任务。3值得一提的是,基于3-DCRT治疗技术下的治疗效果,分割精确度等否明显优于原来的常规放疗机,能够保持射影的形状和肿瘤病变靶区的投影的一致性。
3调强适形放疗
国内外同行评价这种技术为21世纪放射治疗技术的主流。三维适形治疗(3-DCRT)所采用的同步可控多叶光栅,三维适形定位这种技术在IMRT中已成为基础技术。但其不同之处在于采用:
(1)逆向算法设计(Inversereckon Planning)这是IMRT除三维适形之外,为更精确起见所插入的必要步骤,它不仅正面方向的精确剂量计算,而且从逆方向算法来进行验证和审核,使用的高能X线,电子束、质子束等放射源,其射野绕人体用连续或固定集束,在旋转照射方向上达到更精确边界,因而它可以提高强度,达到适应肿瘤形状高输出剂量,三维数字图象重建(3DRR-3Dimension Reckon-Picture Reconstruction)功能,使三维图象中靶区等重要器官与图象吻合,剂量分布合适与否一目了然。(2)有冠状、矢状、横断面的图象及剂量分布,还要能给出任意斜切面的图形及剂量分布,并随时可以显示给治疗人员,设计人员以及医生,它使视野方向的观视(BEV Beam-field Equation Vision)和医生反方向的观视(REV-Reaction Equation Vision)都成一致。(3)模拟选择——在安排和设计射野时必须具有模拟类似常规模拟定位机射野的选择功能,包括准直器种类,(独立式、对称式)和多叶准直器即多叶光栅(LMC-Multiple leaves collimator),大小,放置射野档块和楔形滤过板等。(4)治疗方案确定后,将各项条件输入CT模拟治疗(CT-Simulator),CT的模拟机应能接受上述条件。(5)验证,择优方案选择后将信息转至治疗机电脑按上述条件运转,将各种附加条件如机架,准直器,床移动范围,射野大小,多叶光栅叶片运动及调整机匹配,这样整个过程就完成了。所谓调强适形放射技术就是从固定视野上的物理条件出发,把其准确性调至最高,将平面二维准确调至三维更准确方向,在三维补偿照准方面调至最精确,给到最大足量。从诊断、设计实施和多种补偿手段,各种运动射束的调强,使射野边界锐利,界限明确,达到最高限度的准确定位,最高准确剂量达到靶,高准确度执行预定计划,从而可以超过SRT及SRS的准确治疗方式,又可克服SRT及SRS的明显缺陷。目前在美国已有部分样机试用。它应该是代表明天放射治疗机的方向。也是3-DCRT的发展。
4结论
事实上,伴随着我国医学事业以及科学技术的不断发展,医学研究业关于肿瘤放射放疗的技术水平也已经得到了较大程度上的提高。本篇文中所分析的仅仅只是肿瘤放射放疗技术中的其中一种,即近几年类放射治疗物理技术的新进展,对生物学以及临床研究学两方面的新进展并没有作具体研究,在这里也暂且对其忽略不计。最后需要强调的是,肿瘤放射放疗技术的最终目的是诊治和消除肿瘤,避免肿瘤对患者生命安全产生威胁,保护患者生命。所以从这一点来看,把握好实际情况,全面提升肿瘤的整体治疗效果才是放射放疗中应该注意的一个首要问题。
参考文献
[1]于金民、袁双虎.图像引导放射治疗研究及发展.中华肿瘤杂志,2006,28(2):81-83
[2]王艳阳、傅小龙.CT在影像引导下放疗中应用的历史与现状.中国癌症杂志,2006,16(6), 448-453
[3] 李娅,张明,陈彦,等. 多媒体技术在放射肿瘤学教学中的应用[J]. 中国中医药现代远程教育,2010,8(11):113-114