论文部分内容阅读
针对工业装备故障预测中存在信息不完备等问题,提出将灰色理论与神经网络算法相结合的组合预测方法。首先,通过数据变换技术和重新构造背景值求值方法优化新陈代谢GM(1,1)模型的初始值以及背景值,然后将优化后的新陈代谢模型的输出数据集作为神经网络的输入,原始数据作为神经网络的期望输出。运用附加动量项和变化的自适应学习速率对神经网络的权值更新方法进行改进。其后将得到的最佳神经网络的输出值作为最新信息运用到新陈代谢模型中得到预测值。齿轮运行状态实例预测结果表明,该预测方法可有效提高故障预测精度。