论文部分内容阅读
为提高时间序列预测模型精度,根据各本征模态函数(intrinsic mode function,简称IMF)序列的变化特点,针对EMD-RBF神经网络隐含神经元数目及其中心数据选取问题,利用经验模态分解(empirical mode decomposition,简称EMD)的信号自适应处理能力和径向基函数(radical basis function,简称RBF)神经网络的非线性逼近能力,提出了一种基于EMD与RBF神经网络的混合预测方法。该方法将具有类似时频特性的本征模态函数分别建立RBF神经网络预测模