论文部分内容阅读
支持向量机是20世纪90年代中期发展起来的一种机器学习技术,与传统人工神经网络不同之处在于前者基于结构风险最小化原理,后者基于经验风险最小化原理。支持向量机不仅结构简单,而且技术性能尤其是泛化能力与BP神经网络相比有明显提高。讨论了支持向量机的分类原理,并用多项式函数、径向基函数和感知机函数等3种核函数作为内积回旋,分别以平面点集分类、手写体汉字识别及双螺旋线识别为例,在不同的结构参数下进行了仿真实验,并对3种核函数的分类特性进行了对比分析,给出了在不同模式识别问题中3种核函数的选择条件。