论文部分内容阅读
为提高对模拟电路故障模式的准确分类和减少网络模型的训练时间,提出基于小波包变换(WPT)和果蝇算法(FOA)优化广义回归神经网络(GRNN)的模拟电路故障诊断方法。首先采用小波包变换提取电路优质故障特征,以减少网络训练时间,然后建立GRNN网络模型,选择FOA算法优化GRNN网络参数,构建最优模型对电路故障特征进行训练测试,最后采用仿真测试其性能。实验结果表明, FOA算法有效提高诊断模型训练效率,相比于其它电路故障诊断模型,FOAGRNN模型具有更高的诊断率和优越性。