论文部分内容阅读
为提高双目立体匹配算法在弱纹理区域的匹配精度和多尺度空间的匹配一致性,提出基于窗口内像素均值信息判断和自适应权重的改进Census变换算法进行代价计算,提高像素在视差不连续区域的匹配精度.代价聚合阶段引入高斯金字塔结构,将引导图滤波算法融合到多尺度模型中,并添加正则化约束来提高对弱纹理区域的匹配一致性;视差选择阶段中,采用一系列优化方法如误匹配点检测、区域投票策略和亚像素增强等来提高匹配的正确率.实验结果表明,该算法在Middlebury测试集上的平均误码率为5.91%,在弱纹理区域和视差不连续区域