论文部分内容阅读
为了在复杂多变的环境中实现对数码仪表正负号和小数点的实时识别,提出了一种基于卷积神经网络的数码仪表识别方法。先采用模板匹配方法对目标图像提取感兴趣区域,并对感兴趣区域进行分割,然后对分割的单字符区域采用卷积神经网络进行0~9数字、正负号的识别,再对分割的小数点区域采用MOSSE算法进行小数点识别,最后根据单字符、正负号和小数点的识别结果获取读数。实验结果表明,该方法能够在复杂的环境下准确且稳定地识别数码仪表读数。