论文部分内容阅读
为提升粒子群优化算法在解决复杂拆卸线平衡问题时的计算能力,提出一种改进的粒子群优化算法。该算法选取每个粒子运行最优的邻居粒子为粒子每次迭代过程中“个体学习部分”的学习样本。为保证种群多样性,避免算法出现早熟收敛,提出一种粒子间的水平混合变异(均匀分布变异和高斯分布变异),通过变异判定条件,对粒子的位置进行变异更新,提升算法的搜索性能。针对多目标问题,利用基于目标优先顺序的粒子群优化算法,将多个目标问题按优先顺序进行优化。通过拆卸问题的仿真计算比较结果,验证算法的有效性。