论文部分内容阅读
Phosphorus (P) is necessary for growth and nitrogen fixation, and thus its deficiency is a major factor limiting legume production in most agricultural soils. The effect of phosphorus supply on nodule development and its role in soybeans (Glycine max L.) was studied in a nutrient solution. Plants were inoculated with Bradyrhizobium japonicum and grown for 35 days in a glasshouse at a day and night temperature of 25℃and 15℃, respectively. Although increasing P supply increased the concentrations of P and N in the shoots and roots, the external P supply did not significantly affect the P concentration in the nodules, and the N fixed per unit nodule biomass decreased with increasing P supply. The nitrogen content in the shoots correlated well with the P content (r = 0.92**). At an inoculation level of 102 cells mL-1, the P supply did not affect the number of nodules; however, at inoculation levels of 103.5 and 105 cells mL-1, increasing P supply increased both the number and size of nodules. Irrespective of the inoculation level, increasing P supply increased the nodule biomass relative to the biomass of the host plant. It is suggested that the P deficiency specifically inhibited the nodule development and thereby the total N2 fixation.
The effect of phosphorus supply on nodule development and its role in soybeans (Glycine max L.) was studied in a nutrient solution. Plants were inoculated with Bradyrhizobium japonicum and grown for 35 days in a glasshouse at a day and night temperature of 25 ° C and 15 ° C, respectively. Increasing P supply increased the concentrations of P and N in the shoots and roots, the external P supply did not significantly affect the P concentration in the nodules, and the N fixed per unit nodule biomass decreased with increasing P supply. The nitrogen content in the shoots correlated well with the P content (r = 0.92 **). At an inoculation level of 102 cells mL-1, the P supply did not affect the number of nodules; however, at inoculation levels of 103.5 and 105 cells mL-1, increasing P supply increased both the number and size of n Irrespective of the inoculation level, increasing P supply increased the nodule biomass relative to the biomass of the host plant. It is suggested that the P deficiency specifically inhibits the nodule development and thereby the total N2 fixation.