论文部分内容阅读
提出了一种模糊自适应IMM算法(FAIMM),通过模糊逻辑,根据加速度估计值,自适应地摒弃概率较小的模型,仅选取整个模型集合中最能反映目标“当前”机动的一个模型子集进行运算,从而减少了模型数目;同时采用模糊方法计算模型概率,从而降低了算法的计算量;进一步,通过二级模糊推理,根据模型参考加速度ui的大小自适应地选择适当的最大机动加速度amax和a-max,使系统具有一定的方差调整能力,从而提高了跟踪精度。仿真结果表明,较之于标准IMM算法.FAIMM算法在机动目标跟踪精度、跟踪的平稳性以及收敛速度等方面都有