论文部分内容阅读
提出了一种基于深度信念网络(DBN)的社保卡号码识别方法,通过采集社保卡图像,采用模块分割的方法,对社保卡号码区域进行行分割,利用区域生长的方法对行内号码分割,将号码图像灰度化与二值化,并归一化为32×32大小,作为深度信念网络的输入数据,训练3层受限玻尔兹曼机(RBM)来获得更加抽象的特征表达,模型的最顶层结合Softmax回归分类器对抽取后的特征进行分类。实验结果表明:其准确率高达98.3%,与BP神经网络和支持向量机(SVM)模型相比,深度信念网络学习了数据的高层特征的同时降低了特征维数,提高