论文部分内容阅读
针对神经网络结构与参数并行优化问题,提出一种基于动态多群体差分进化算法的前向神经网络设计方法。采用分层递阶结构原理构造算法个体,根据控制基因信息将个体分成不同的动态群体。通过对个体进行重构,实现进化过程中个体信息的充分交换与共享。设计基于群体适应度的控制基因更新方法来优化网络拓扑结构,克服结构优化的盲目与低效问题。将所设计的神经网络应用于大包线飞行控制律参数拟合中。仿真结果表明,该算法能快速有效地确定神经网络的结构和权值,所优化的网络在调参控制中具有较好的泛化能力。