论文部分内容阅读
通过研究分析夏热冬冷地区公共建筑能耗变化特点,建立了RBF神经网络建筑能耗预测模型。在此基础上运用微粒群算法对模型优化,建立了基于PSO-RBF的建筑能耗预测模型。利用大量数据构造样本集,运用软件分别对优化前后的预测模型进行训练,并运用到典型公共建筑能耗值的预测实例中。结果表明基于PSO-RBF的建筑能耗预测模型的学习能力和预测能力强,能较准确地实现公共建筑能耗预测。